

ENVIRONMENTAL PRODUCT DECLARATION

REBAR

MANUFACTURED IN GERLAFINGEN

Based on PCR

PCR 2019:14 Construction products v 1.11, 2021-02-05

EN:15804:2012+A2:2019

ISO 14025

Certification N°

S-P-05247

Issue date 2022-03-07 Valid until

2027-01-17

CPC Code

Programme:

The International **EPD System** www.environdec.com

Programme operator:

EPD International AB

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

GENERAL INFORMATION

EPD REFERENCES

EPD OWNER: STAHL GERLAFINGEN AG - AFV BELTRAME GROUP, BAHNHOFSTRASSE, 2-3 4563 - GERLAFINGEN (CH)

PROGRAM OPERATOR: EPD INTERNATIONAL AB. BOX 21060, SE-100 31 STOCKHOLM, SWEDEN: INFO@ENVIRONDEC.COM

INDEPENDENT VERIFICATION

This declaration has been developed referring to the International EPD System, following the General Programme Instructions v 4.0; further information and the document itself are available at: www.environdec.com. EPD document valid within the following geographical area: Switzerland and other countries worldwide according to sales market conditions.

ISO standard ISO 21930 and CEN standard EN 15804 served as the core PCR

PCR 2019:14 Construction products, Version 1.11, 2021-02-05

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www. environdec.com/contact.

Independent verification of the declaration and data, according to EN ISO 14025: 2010

Third party verifier: ICMQ SpA, via De Castillia, 10 20124 Milano (www.icmg.it)

EPD process certification

Accredited by: Accredia

Procedure for follow-up during EPD validity involves third party verifier

NO

Environmental declarations published within the same product category, but from different programmes may not be comparable. In particular, EPDs of construction products may not be comparable if they do not comply with EN 15804. EPD owner has the sole ownership, liability and responsibility of the EPD.

CONTACTS

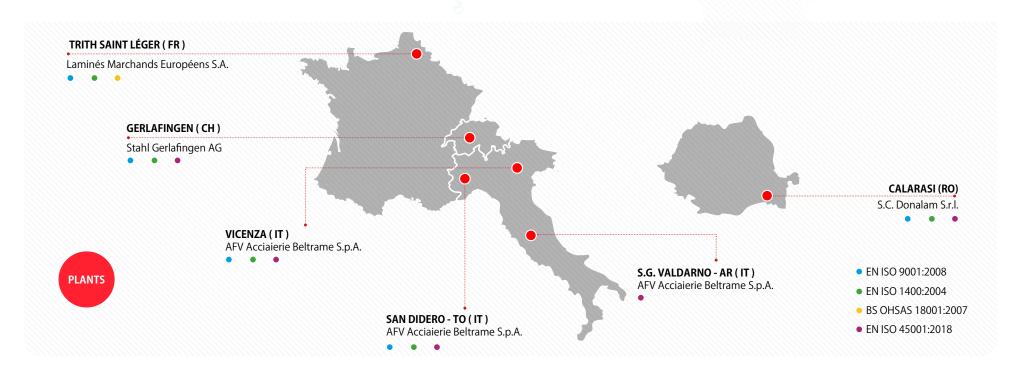
Dr. Christoph Zeltenr (czeltner@stahl-gerlafingen.com) Tel. +41 (0)32 674 26 00

NFV BELTRAME GROUP

Technical support to Beltrame Group was provided by Life Cycle Engineering, Italy. (info@studiolce.it, www.lcengineering.eu).

THE COMPANY

The AFV Beltrame Group has operated in the steel industry for over a century, producing rolled sections for use in construction, shipyards, and excavators.


The facilities, which have a production capacity of approximately **3,2 million tons**, include three electric furnaces and ten rolling mills. These are scattered in six plants located in **Italy**, **France**, **Switzerland**, and **Romania**.

Their geographical distribution is very advantageous given the areas where the products are consumed and those where raw materials are purchased.

The AFV Beltrame Group is commercially present in all European markets as well as in the Mediterranean region through shares in local companies, agents, or the internal sales force. All employees, amounting to approximately **2,000 people**, are strongly commit-

ted and motivated to satisfy the customers' needs through constant improvements in production, organization and level of service.

In order to support the principles in the code of ethics and the policy regarding **Quality**, **Health** and **Safety**, and the **Environment** (QHSE), all production plants have adopted an Integrated Management System.

SCOPE AND TYPE OF EPD®

THE APPROACH USED IN THIS EPD IS "CRADLE TO GATE WITH OPTIONS" ONE

TABLE OF MODULES

	PRO	PRODUCT STAGE CONSTRUCTION PROCESS STAGE US						USE STAGE				END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES	
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
MODULE	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Module declared	Χ	Χ	Χ	X	MND	MND	MND	MND	MND	MND	MND	MND	Х	Χ	Χ	Χ	X
Geography	СН	СН	СН	WLD	_	_	_	_	_	_	_	_	WLD	WLD	WLD	WLD	WLD
Specific data used		> 90%		_	_	_	_	_	_	_	_	_	_	_	_	_	-
Variation-products		< 10%	• • • • • • • • • • •	_	-	_	-	_	-	_	-	_	_	_	-	_	-
Variation-sites	NO	T RELEV <i>E</i>	NT	_	_	_	_	_	_	_	_	_	-	_	_	_	-

TYPE OF EPD®: Product EPD®

REPORT LCA: Life Cycle Assessment (LCA) applied to Rebar (WK)

REFERENCE PERIOD: 2020

GEOGRAPHICAL SCOPE OF THE EPD: World according to sales market

conditions.

AVERAGING: Not applied.

SOFTWARE: SimaPro ver. 9.2.0.1 (www.pre.nl)

MAIN DATABASE: Ecoinvent 3.6

Environmental declarations published within the same product category, though originating from different programs, may not be comparable.

DETAILED PRODUCT DESCRIPTION

This EPD refers to Rebar (WK), produced at **Gerlafingen (Switzerland)** plant via electric arc furnace route and rolling mill, starting from post and pre consumer steel scraps, varying steel grades, e.g. S235, S275, S355 etc.. The total amount of products covered by this EPD, year 2020: 593 883 t.

CONTENT DECLARATION

MATERIAL	MASS SHARE
IRON	96 %
ALLOY ELEMENTS	2 %
OTHER ELEMENTS	2 %

No packaging is required for functional unit delivery and distribution, and no renewable material is contained in functional unit.

PRODUCT DIMENSIONS AND SPECIFIC STANDARDS:

» SIA 262 » NFA 35-080-1 » DIN 488-2 » NEN 6008

Fundament Fundament	A COUNTY OF THE PARTY OF THE PA	
Distribution of the second		1
Т	HICKNESS (mm)	
from	to	
		THICKNESS (mm)

PRODUCT	STANDARD	THICKNESS (mm)				
PRODUCT	SIANDARD	from	to			
Compact coils	B500B	6	20			
Bars	B500C	14	40			
Meshes / Accessoires	B500B/A	5	10			

ENVIRONMENTAL PERFORMANCE

The detailed environmental performance (in terms of potential environmental impacts, use of resources and waste generation) is presented for the three phases Upstream, Core and Downstream and related sub-phases (A1-A2-A3-A4-C1-C2-C3-C4-D). Construction installation (A5) and use phase (B1 - B7) are modules not declared (MND).

DECLARED UNIT (D.U.) The declared unit is 1 tonne (1 000 kg) of Rebar

GERLAFINGEN - AFV BELTRAME GROUP - REBAR

GWP Global warming potential, total

GWP,f Global warming potential, fossil

GWP,b Global warming potential, biogenic

GWP, luluc Global warming potential, land use & land use change **GWP, ghg** Global warming potential, excluding biogenic uptake,

emission and storage

ODP Ozone depletion potential

AP Acidification Potential

EP,f Eutrophication potential, freshwater

EP,m Eutrophication potential, marine

EP,t Eutrophication potential, terrestrial

POCP Photochemical ozone creation potential

ADPE Abiotic depletion potential minerals & metals*

ADPF Abiotic depletion potential fossil fuels*

WDP Water use deprivation potential*

*: The results of these environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator

Additional environmental impact indicators are computed in the LCA report but not reported in the EPD.

ENVIRONMENTAL IMPACTS PER DECLARED UNIT

POTENTIAL		UPSTREAM CORE									
ENVIRONMENTAL IMPACTS	UNITS / D.U.	A1	A2	A3	A4	C1	C2	C3	C4	TOTAL*	D
GWP	kg CO₂ eq	1,19E+02	1,09E+01	2,38E+02	7,92E+00	5,11E+01	2,60E+01	2,64E+00	1,26E-01	4,57E+02	-1,20E+02
GWP,f	kg CO ₂ eq	1,19E+02	1,09E+01	2,38E+02	7,92E+00	5,11E+01	2,60E+01	2,63E+00	1,26E-01	4,56E+02	-1,20E+02
GWP,b	kg CO ₂ eq	2,21E-01	5,56E-04	3,03E-01	4,09E-04	3,44E-03	1,41E-03	7,89E-03	1,67E-05	5,38E-01	-2,57E-02
GWP,luluc	kg CO ₂ eq	6,83E-02	7,87E-05	1,23E-01	5,75E-05	7,48E-04	1,99E-04	5,44E-03	3,11E-06	1,98E-01	-1,23E-02
GWP,ghg	kg CO₂ eq	1,19E+02	1,09E+01	2,38E+02	7,92E+00	5,11E+01	2,60E+01	2,64E+00	1,26E-01	4,56E+02	-1,20E+02
ODP	kg CFC11 eq	3,46E-05	2,47E-06	4,06E-06	1,80E-06	1,15E-05	6,08E-06	9,70E-08	2,63E-08	6,06E-05	-3,72E-06
AP	mol H+ eq	7,14E-01	8,55E-02	6,04E-01	5,09E-02	5,52E-01	1,21E-01	1,32E-02	1,30E-03	2,14E+00	-4,53E-01
EP,f	kg P eq	4,29E-03	5,20E-06	4,71E-03	3,93E-06	3,82E-05	1,43E-05	1,38E-04	4,55E-07	9,20E-03	-5,10E-03
EP,m	kg N eq	2,14E-01	3,61E-02	1,90E-01	2,15E-02	2,47E-01	4,52E-02	2,41E-03	5,65E-04	7,57E-01	-9,23E-02
EP,t	mol N eq	2,35E+00	3,96E-01	2,10E+00	2,36E-01	2,71E+00	4,96E-01	2,67E-02	6,20E-03	8,32E+00	-1,01E+00
POCP	kg NMVOC eq	6,76E-01	1,04E-01	5,34E-01	6,17E-02	7,42E-01	1,29E-01	7,23E-03	1,73E-03	2,25E+00	-5,37E-01
ADPE	kg Sb eq	9,51E-05	3,06E-07	1,90E-04	2,60E-07	2,54E-06	1,11E-06	5,01E-08	5,83E-09	2,90E-04	-1,88E-03
ADPF	MJ	9,52E+03	1,51E+02	1,15E+03	1,10E+02	7,07E+02	3,71E+02	3,41E+01	1,68E+00	1,20E+04	-9,89E+02
WDP	m³	1,25E+02	-3,39E-02	5,83E+01	-2,43E-02	1,44E-01	-7,92E-02	3,83E-01	5,89E-04	1,84E+02	-1,06E+01

Page 7 v.1, 2022-01-18

GERLAFINGEN AFV BELTRAME GROUPREBAR

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM Use of renewable primary energy resources used as raw materials

PERT Total use of renewable primary energy resources

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

SM Use of secondary raw materials

RSF Use of renewable secondary fuels

NRSF Use of non-renewable secondary fuels

FW Use of net fresh water

RESOURCE USE PER DI	ECLARED UNIT										
		UPSTREAM	EAM CORE								
USE OF RESOURCES	UNITS / D.U.	A1	A2	A3	A4	C1	C2	(3 	C4	TOTAL*	D
PERE	MJ	8,00E+02	2,62E-01	1,42E+02	1,82E-01	1,12E+00	5,46E-01	4,04E+00	6,99E-03	9,48E+02	-8,74E+01
PERM	MJ	0,00E+00									
PERT	MJ	8,00E+02	2,62E-01	1,42E+02	1,82E-01	1,12E+00	5,46E-01	4,04E+00	6,99E-03	9,48E+02	-8,74E+01
PENRE	MJ	1,02E+04	1,47E+02	1,40E+03	1,07E+02	6,92E+02	3,63E+02	4,45E+01	1,68E+00	1,29E+04	-1,48E+03
PENRM	MJ	0,00E+00	0,00E+00	4,53E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,53E+00	0,00E+00
PENRT	MJ	1,02E+04	1,47E+02	1,41E+03	1,07E+02	6,92E+02	3,63E+02	4,45E+01	1,68E+00	1,30E+04	-1,48E+03
SM	kg	1,16E+03	0,00E+00	1,16E+03	0,00E+00						
RSF	MJ	0,00E+00									
NRSF	MJ	0,00E+00									
FW	m³	6,38E+00	7,61E-03	1,76E+00	4,50E-03	1,78E-02	7,36E-03	1,44E-02	4,81E-05	8,19E+00	-1,60E-01

*Totals may not correspond to the sum of the individual contributes due to approximations.

v.1, 2022-01-18 Page 8

GERLAFINGEN AFV BELTRAME GROUPREBAR

HWD Hazardous waste disposed

NHWD Non-hazardous waste disposed

RWD Radioactive waste disposed

CRU Components for re-use

MFR Materials for recycling

MER Materials for energy recovery

EE Exported energy

OUTPUT FLOWS AND	WASTE CATEGOR	RIES PER DECLA	RED UNIT								
WASTE		UPSTREAM	CORE								
GENERATION AND	UNITS / D.U.	A1	A2	А3	A4	C1	C2	C3	C4	TOTAL*	D
TREATMENT		0-0		11			0000				And the second
HWD	kg	0,00E+00	0,00E+00	3,09E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,09E-01	0,00E+00
NHWD	kg	0,00E+00	0,00E+00	1,02E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,02E+01	0,00E+00
RWD	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	0,00E+00	0,00E+00	2,57E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,57E+02	0,00E+00
MER	kg	0,00E+00	0,00E+00	7,82E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,82E-01	0,00E+00
EE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

*Totals may not correspond to the sum of the individual contributes due to approximations.

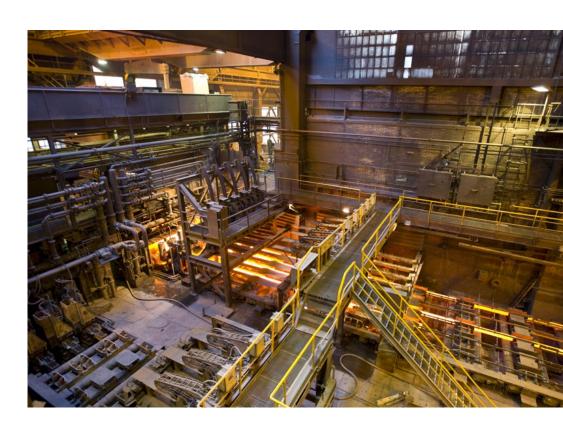
Page 9

CALCULATION RULES

METHODOLOGY

The environmental burden of the product has been calculated according to the GPI v.3.01 issued by the International EPD System¹ (Cradle to gate with options). This declaration is based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system.

Rebar at plant level, was described by using specific data from manufacturing facility (Gerlafingen) for year 2020.


Customized LCA² questionnaires were used to gather in-depth information about all aspects of the production system (for example, raw materials specifications, pre treatments, process efficiencies, air emissions, waste management), ultimately providing a complete picture of the environmental burden of the system from raw materials supply (A1) to Transport (A2) and Manufacturing (A3). The use phase was not considered according to PCR, while transport to final destination (A4) and end-of-life phases (C1-C2-C3-C4-D) were considered. A distance of 200 km from operation plant and dismantling site was adopted. According to PEFCR a collection rate of 0,95 was adopted. Therefore, in nominal installation and operating conditions, no emissions to air nor to water shall occur.

Data quality has been assessed and validated during data collection process. According to EN:15804 the applied cut-off criterion for mass and energy flows is 1%.

¹International EPD System is managed by EPD International AB (www.environdec.com).

DECLARED UNIT

Rods are usually traded in mass so that the declared unit is **1 ton of Rebar.**

 $^{^{2}\}mbox{The LCA}$ methodology is standardized at international level by ISO 14040 and ISO 14044.

CALCULATION RULES

According to the PCR 2019:14 v. 1.11 the main activities are listed and divided in three subsystems: UPSTREAM Process, CORE Module, DOWNSTREAM Process

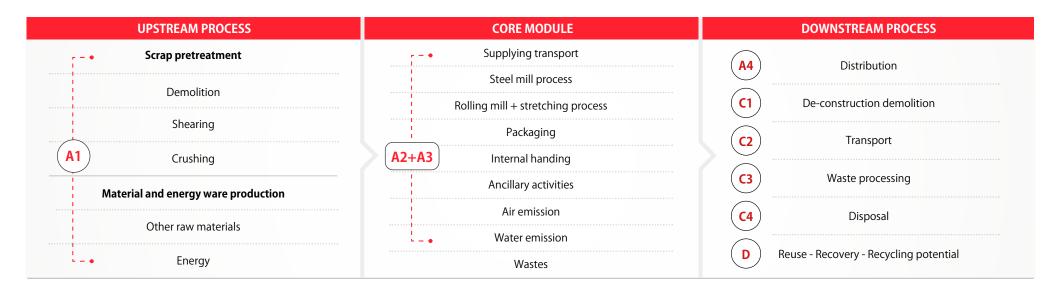


Figure 1. Scheme of the considered system boundaries (including upstream, core and downstream main processes).

UPSTREAM PROCESS

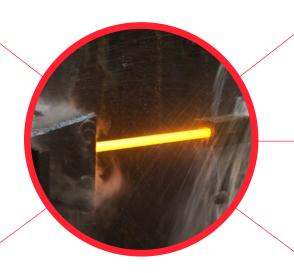
Scheme of the considered system boundaries (upstream processes).

Steel scrap collection

Production of virgin materials, alloy elements and ancillaries

Specific secondary materials pre-treatments, where appropriate

Generation of electricity and other fuels from primary and from secondary energy resources (excluding waste treatments)


CORE PROCESS

Scheme of the considered system boundaries (core processes).

Raw materials transportation from production or collection facilities to the production plant and internal transportation.

Rolling mill, production, including utilities

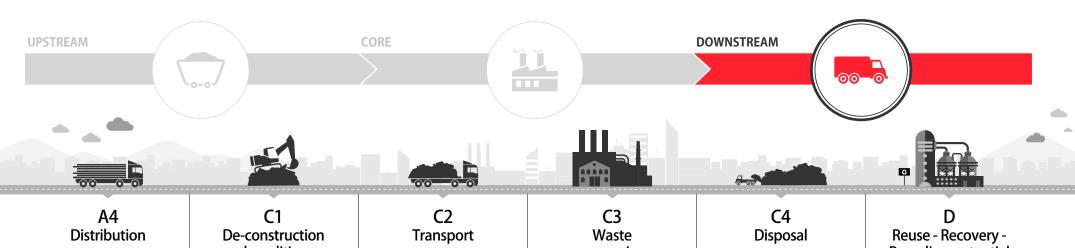
Packaging materials

Specific secondary materials pre-treatments, where appropriate

A2 - Transportation

A3 - Manufacturing

Treatment of waste generated from the manufacturing processes



DOWNSTREAM PROCESS

Transport to the customers (general market average). Distances estimated considering the transported quantities and the distances average from Gerlafingen plant to the client. Final products are delivered to many national and international areas.

demolition

Dismantling and demolition operations required to remove the product from the building. Initial onsite sorting of the materials is included as well.

Transportation of the discarded product as part of the waste processing (to recycling site or to a final disposal site).

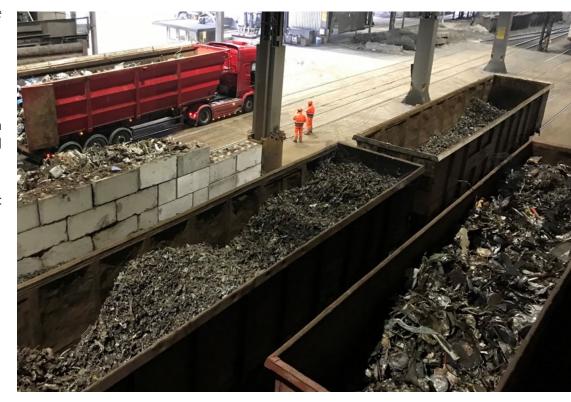
processing

Waste processing, including collection of waste fraction from deconstruction and waste processing of material flows intended for reuse, recycling and energy recovery.

Waste disposal including physical pre-treatment and management of the disposal site.

Recycling potential

Environmental impacts associated to waste use after the investigated system (including recycling).


ADDITIONAL INFORMATION

Main environmental characteristics of the considered plants are:

- **1.** EAF primary and secondary dedusting achieve an efficient extraction of all emission sources by using direct off-gas extraction (shaft) and total building evacuation, with subsequent dedusting by means of a bag filter
- **2.** Prevention and reduction of (PCDD/F) and (PCB) emissions by using the combination of the following techniques,
- appropriate rapid quenching of the EAF off-gas
- injection of adsorption agents into the duct
- final dedusting with a bag filter.
- **3.** Minimisation of water consumption by using a recirculating loop cooling system with purge recovery. Removal of solids by sedimentation or filtration, removal of oil with skimming devices.
- **4.** Prevention and reduction of waste generation by using the following techniques:
- I. appropriate collection and storage to facilitate specific treatments;
- **II.** on-site recovery and recycling of specific by-products from the different processes;
- **III.** external recovery of filter dusts in the non-ferrous metal industry (zinc, lead);
- **IV.** separation of scale in the water treatment process and external recovery in the cement and blast-furnace industry;
- **V.** recovery of EAF slag as a secondary raw material (inert aggregates) in the construction industry.

5. Radiation monitoring of scraps and raw materials by means of detection equipment installed at the weighing post.

In accordance with general EPD requirements the LCA study used specific, generic and other generic data. This last data contributes to the environmental indicators less than 10%.

ADDITIONAL INFORMATION - REBAR

ECOLOGICAL SCARCITY METHOD - UBP

POTENTIAL		UPSTREAM	UPSTREAM CORE DOWNSTREAM								
ENVIRONMENTAL	UNITS / D.U.	A1	A2	А3	A4	C 1	C2	C3	C4	TOTAL	D
IMPACTS	2.0.	0-0		<u> </u>	○○		0000				
Water resources	UBP	350	0,4	161	0,2	8	1	-10	0,0	511	24
Energy resources	UBP	34 529	558	4 289	408	2 621	1 377	128	6	43 915	-3 649
Mineral resources	UBP	31 161	1	2 691	1	12	5	1	0,0	33 871	-2 795
Land use	UBP	696	0,5	154	0,4	3	1	5	9	869	-828
Global warming	UBP	52 342	5 013	38 110	3 632	23 419	11 900	1 182	58	135 656	-53 421
Ozone layer depletion	UBP	159	14	21	10	64	34	1	0,1	303	-62
Main air pollutants and PM	UBP	67 526	4 797	37 634	2 979	35 976	6 806	943	83	156 744	-51 611
Carcinogenic substances into air	UBP	3 742	113	38 283	60	322	62	59	2	42 642	-16 771
Heavy metals into air	UBP	1 933	774	41 229	656	496	1 981	42	2	47 112	33 789
Water pollutants	UBP	19 785	549	960	400	2 767	1 349	14	6	25 830	-2 041
POP into water	UBP	894	348	332	253	1 602	848	10	4	4 291	-267
Heavy metals into water	UBP	607 641	85	125 258	61	414	200	43	1	733 703	101 663
Pesticides into soil	UBP	10	0,0	5	0,0	0,1	0,0	0,4	0,0	16	-6
Heavy metals into soil	UBP	798	372	215	320	6	929	3	0,0	2 644	-252
Radioactive substances into air	UBP	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Radioactive substances into water	UBP	1 108	0,1	85	0,1	0,3	0,2	2	0,0	1 195	8
Noise	UBP	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Non radioactive waste to deposit	UBP	149	7	3 746	6	50	26	0,3	0,1	3 986	-283
Radioactive waste to deposit	UBP	99 711	8	7 638	6	34	19	155	0,1	107 571	755

REFERENCES

- EN 15804:2012+A2:2019
- ISO 14040 : 2021
- ISO 14044: 2021
- Life Cycle Assessment (LCA) of Merchant bars (WP) and Rebars (WK)
- General Programme Instructions, v3.01 (2019-09-18)
- PCR 2019:14 Construction products v 1.11 (2021-02-05)

